Go to login Go to sub menu Go to text

Course summary

  • Type MOOC course
  • Period Always open
  • Learning Time Study freely
  • Course approval method Automatic approval
  • Certificate Issue Online
http://postech.edwith.org/differential-equation-p2
둘러보기
Thumb up 0 Learner 11

Instructor Introduction

  • 손영환

    - POSTECH 수학과 (ergodic theory 전공) 조교수
    - 전, KIAS, Postdoc, Weizmann Institute, Postdoc

  • 이동현

    - 포항공대 수학과 (편미분 방정식 전공) 조교수
    - 위스콘신 매디슨 대학교 초빙조교수 (2015-2018)
    - 뉴욕대학교 박사 (2015)
    - Non-convex 영역에서 볼츠만 방정식의 평형상태 수렴 (Arch. Rational Mech. Anal, 2018)
    - Convex 도메인에서 볼츠만 방정식의 점근적 안정성 (Comm. Pure Appl. Math, 2018)
    - 자유경계를 가진 Magnetohydrodynamics의 해의 존재성 (SIAM J. Math Anal, 2017)

Lecture plan

강의
  1. CHAPTER 1 The Laplace Transform
    1. Laplace Transform
    1. Solution of Initial Value Problems
    1. Step Functions
  2. CHAPTER 2 The Laplace Transform
    1. Discontinuous Forcing Functions
    1. Impulse Functions
    1. Convolution Integral
  3. CHAPTER 3 Systems of First-Order Linear Equations
    1. Matrices
    1. Systems of Linear Equations and Linear Independence
    1. Basic Theory of Systems of Linear Equations
  4. CHAPTER 4 Systems of First-Order Linear Equations
    1. Homogeneous Linear System with Constant Coefficients
    1. Eigenvalues and Fundamental Matrices
    1. Repeated Eigenvalues
  5. CHAPTER 5 Partial Differential Equations and Fourier Series
    1. Two-Point Boundary Value Problems
    1. Fourier Series
    1. Fourier Convergence Theorem
  6. CHAPTER 6 Partial Differential Equations and Fourier Series
    1. Separation of Variables and Heat Equation
    1. Other Heat Equation Problems
    1. Wave Equation I
  7. CHAPTER 7 Partial Differential Equations and Fourier Series
    1. Wave Equation II
    1. Laplace Equation I
    1. Laplace Equation II
  8. Final exam
    1. Final exam - 1
    1. Final exam - 2

Additional Info

교재: 교재 없음 (강의노트 제공)