
Instructor Introduction
-
손영환
- POSTECH 수학과 (ergodic theory 전공) 조교수
- 전, KIAS, Postdoc, Weizmann Institute, Postdoc -
이동현
- 포항공대 수학과 (편미분 방정식 전공) 조교수
- 위스콘신 매디슨 대학교 초빙조교수 (2015-2018)
- 뉴욕대학교 박사 (2015)
- Non-convex 영역에서 볼츠만 방정식의 평형상태 수렴 (Arch. Rational Mech. Anal, 2018)
- Convex 도메인에서 볼츠만 방정식의 점근적 안정성 (Comm. Pure Appl. Math, 2018)
- 자유경계를 가진 Magnetohydrodynamics의 해의 존재성 (SIAM J. Math Anal, 2017)
Lecture plan
강의
-
CHAPTER 1 The Laplace Transform
- Laplace Transform
- Solution of Initial Value Problems
- Step Functions
-
CHAPTER 2 The Laplace Transform
- Discontinuous Forcing Functions
- Impulse Functions
- Convolution Integral
-
CHAPTER 3 Systems of First-Order Linear Equations
- Matrices
- Systems of Linear Equations and Linear Independence
- Basic Theory of Systems of Linear Equations
-
CHAPTER 4 Systems of First-Order Linear Equations
- Homogeneous Linear System with Constant Coefficients
- Eigenvalues and Fundamental Matrices
- Repeated Eigenvalues
-
CHAPTER 5 Partial Differential Equations and Fourier Series
- Two-Point Boundary Value Problems
- Fourier Series
- Fourier Convergence Theorem
-
CHAPTER 6 Partial Differential Equations and Fourier Series
- Separation of Variables and Heat Equation
- Other Heat Equation Problems
- Wave Equation I
-
CHAPTER 7 Partial Differential Equations and Fourier Series
- Wave Equation II
- Laplace Equation I
- Laplace Equation II
-
Final exam
- Final exam - 1
- Final exam - 2
Additional Info
교재: 교재 없음 (강의노트 제공)